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Predictive Coding 
 
 
 

Background 
Predictive coding (or Technology-assist review) uses machine learning and natural language 
processing (NLP) techniques against the gigantic datasets of forensics and eDiscovery. 
Predictive coding is typically used to replace or supplement document review processes for 
identifying responsive, privileged, confidential or other document categories. Although there 
has been substantial growth in the use of predictive coding over the last few years, like any 
other technologies, it’s not guaranteed to perform well without the proper configuration and 
settings. It needs to be assisted and trained with a deep understanding of the data, domain, 
and the technology itself, making it quite difficult in some cases and not normally a straight 
out-of-the-box technology. 
 
 In the next section, you will see how Vista Analytics opens the black box of predictive 
coding to our customers and developed a solid predictive coding solution leveraging both 
machine learning and cloud computing. Our solution is not only more accurate than many 
competitors but also more cost-effective than other solutions. 
 
 
 

Predictive Coding At Vista Analytics 
From our perspective, a successful predictive coding solution 
consists of three fundamental elements: workflow, technique, and 
infrastructure. Workflow defines how to prepare training, 
validation and scoring datasets for model training, evaluation 
and scoring. Technique is about the appropriate Natural 
Language Processing (NLP) and machine learning 
techniques for a given scenario. Infrastructure includes 
where to implement the solution and what resources a 
solution can leverage.  
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Workflow 
Without a solid workflow, predictive coding can very easily fail or provide sub-optimum 
results.. One of the dangers in inherent in predictive coding is the unseen nature of many 
types of errors.  These errors can lead to substantial effort by attorneys in reviewing 
incorrect documents.  In Vista Analytics, we avoid the pitfalls by following a solid workflow.   
 

   
 

• Document Preparation: Documents in a predictive coding exercise may come in 
with various formats or encodings. It’s very important to convert them to a text (.txt) 
format and make sure that they are all using UTF-8 encoding. 

• Training and Validation Dataset Setup: All collected documents will be divided into 
3 parts: training set, validation set, and scoring set. With attorney’s help, labels are 
assigned to documents in training and validation set. That means we know exactly if a 
document is relevant or irrelevant in the training and validation sets. Depending on 
the Use case and data availability, training and validation sets are usually small with a 
few thousand documents minimizing the cost and effort involved in the manual 
review. The size of the training and validation sets and the ratio of relevant and 
irrelevant documents inside are determined by statistical analysis. 

• Model Training and Tuning: Models are trained using 10-fold cross-validation in the 
training data set. In a 10-fold cross validation, the training set is randomly partitioned 
into 10 equal sized subsets. Of the 10 subsets, a single subset is retained as the 
validation data for testing the model, and the remaining 9 subsets are used to train a 
model. The process is repeated 10 times, with each of the 10 subsets used exactly 
once as the validation data. We take an extra step to validate the trained model on 
the hold-out validation set to make sure it will perform well on the scoring set. The 
best model is chosen based on its Area Under the Curve (AUC) in 10-fold cross 
validation.  The goal of the cross validation is to assess the predictive accuracy of the 
training sets to the larger population of documents. 

• Scoring and Reporting: After scoring a large population of documents with 
previously unknown labels, we output the results to a delimited file (normally a .csv 
format) and generate descriptive statistics based on customers’ needs. 

 
Please contact Vista Analytics for more details about our considerations of workflow setup 
and the statistics behind it. 
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Technique 
Like any machine learning problem, the keys of accurate predictive coding are: feature and 
algorithm. In Vista Analytics, we open the black box for our customers and make these two 
steps as transparent and configurable as possible.  
 
 The first step of predictive coding is to represent each document by a term vector. 
Each element in a term vector represents a word or phrase. Some important decisions need 
to be made to generate term vectors, which have huge impact on the performance of the 
predictive coding model.  Below we list some but not all settings that our solution will allow 
you to configure: 
 

• Binary vs. Term Frequency (TF) vs. Term Frequency-Inverse Document 
Frequency (TF-IDF): As introduced above, each element of a term vector represents 
a word or phrase. The value of an element can be 0/1 (binary) or a numeric value 
between 0 and 1 (TF or TF-IDF). In the binary setting, zero means a word is absent in a 
document while one means the opposite. In the TF or TF-IDF setting, the value of an 
element tells not only the existence of a word given a document, but also its 
importance to a document. Specifically, in the TF setting, a vector element represents 
the term frequency of a word in a document. The higher the frequency, the larger the 
value, and the higher importance of the word to a document. TF-IDF is a variant of TF, 
which plays down the importance of a word if it occurs in many documents.  

• Feature Number: In predictive coding, each word or phrase represents a feature. 
When we discuss the number of features to use, we refer to the length of these term 
vectors. In most cases, it is not a good idea to consider all words or phrases that exist 
in a corpus when building a predictive coding model. Since word frequency follows 
the power law (a relationship between two quantities such that one is proportional to 
a fixed power of the other) in natural language, many words occur too infrequently to 
be useful in building predictive coding models. Thus, it is important to have some 
controls on the number of features to use. 

• N-gram: In the fields of computational linguistics and probability, an n-gram is a 
contiguous sequence of n items from a given sequence of text or speech. In 
predictive coding, we consider each word as an item, so that 1-gram (unigram) means 
using each individual word as a feature while 2-gram (bigram) means using two 
consecutive words as a feature.  
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• Stemming: In natural language processing, stemming is the process of reducing 
inflected (or sometimes derived) words to their word stem or root form. For example, 
a stemming algorithm will reduce the words “fishing”, “fished”, and “fisher” to the root 
word “fish”. The advantage of stemming is to largely reduce the number of features 
with the assumption that it is sometime meaningless to treat a word and its plural 
form as separate features. However, stemming is not always necessary and it might 
introduce noise in some cases.  
	

Once the feature vectors are generated, the key is to select the right machine learning model 
and parameter to build the classifier. Logistic	regression and Support	Vector	Machine are two 
of the best off-the-shelf machine learning models that are widely used in predictive coding. 
In our solution, users can train different classifiers with different parameters and arrive at 
the best model and setting using a grid search strategy.  Assuming that there is a single best 
classifier for all scenarios is, we believe, one of the failings of current predictive coding 
solutions in the legal marketplace. 
  

Infrastructure 
The Vista Analytics’ solution is implemented based on Apache Spark and Amazon Elastic 
MapReduce (EMR). Apache Spark is a fast and flexible engine for big data processing, with 
built-in modules for machine learning. Apache Spark consists of a collection of state-of-the-
art machine learning models which allow us to build predictive coding models using the best 
technique for a given scenario. EMR is an Amazon Web Service (AWS) for large volume data 
processing and analysis. It uses Hadoop, an open-source framework, to quickly and cost-
effectively process vast amounts of data. By combining the power of Apache Spark and 
Amazon EMR, we can train dozens of predictive coding models in parallel, evaluate their 
performance and pick the best model. In addition, applying the module to millions of 
documents can be accomplished in minutes as opposed to days or weeks. 
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Use Case 
In this scenario, we demonstrate the use of predictive coding to separate spam emails from 
non-spam emails, which, to some extent, is similar to differentiate relevant and irrelevant 
documents in eDiscovery.  The use of spam/non-spam emails in this analysis was based on 
the availability of this data set as opposed to confidential data sets used in Discovery.   
 
Specifically, we used CSDMC2010 SPAM corpus in our experiment. This dataset contains 
4327 labeled emails out of which there are 2949 non-spam emails and 1378 spam emails. 
We randomly split this dataset into training and validation sets. We first built and fine-tuned 
our model on the training dataset using 10-fold cross-validation, and then further evaluate 
the effectiveness of our model in the hold-out validation set.  
 
As discussed in the previous section,  we have opened the black box of predictive coding  
and make it as transparent as possible. We launched an Amazon EMR cluster and leveraged 
the Spark Pipeline API to build multiple predictive coding models with different settings in 
parallel. Benefits of using Spark include but are not limited to: 1) models with subtle 
configuration differences may result in significantly different performance; 2) Spark is 
flexible and quick to build and compare different models and allows us to customize our 
solution fully driven by the specific data characteristics; 3) parallel computing in EMR enables 
us to quickly and cost-effectively train models which can take days in a non-parallel 
computing environment. 
 
Table below shows the 10-fold cross validation AUC of our predictive coding models under 
different settings in the training dataset. Here, we tested binary term vector vs. term-
frequency term vector, using unigram (N=1) and bigram (N=2), using term vector with 1,000 
words, 5,000 words or 10,000 words, and using different regularization parameters in the 
logistic regression model. As you can see, the best setting of parameters produced a model 
with nearly 0.998 AUC (highlighted in green), while the worst setting of parameters yield a 
model with only 0.937 AUC (highlighted in red). With this relatively simple spam email 
classification problem (spam email detection has been widely used), the best setting can 
outperform the worst setting by nearly 6.5%. This demonstrates the importance of trying 
different settings to pick the best model, because the boundary between relevant and 
irrelevant documents is much fuzzier in forensic investigations and eDiscovery.   
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Table 1. 10-fold cross validation AUC of different models in spam email training data 
 

Binary vs. Term-Frequency Regularization Parameter λ N-gram # of Features Area Under the Curve (AUC) 
Binary 0.1 1 1000 0.9890235003403679 
Binary 0.1 1 5000 0.9957067798374365 
Binary 0.1 1 10000 0.997271877226154 
Binary 0.1 2 1000 0.9538280090469424 
Binary 0.1 2 5000 0.9818555815554528 
Binary 0.1 2 10000 0.9890945217810384 

TF 0.1 1 1000 0.9823678980708958 
TF 0.1 1 5000 0.9920637627969465 
TF 0.1 1 10000 0.9932668135663414 
TF 0.1 2 1000 0.9400254137546925 
TF 0.1 2 5000 0.9746656278968298 
TF 0.1 2 10000 0.9839525437080279 

Binary 0.01 1 1000 0.9875769960243376 
Binary 0.01 1 5000 0.9955929255861299 
Binary 0.01 1 10000 0.9975319606719455 
Binary 0.01 2 1000 0.9456864519599613 
Binary 0.01 2 5000 0.9790730930254945 
Binary 0.01 2 10000 0.9879151419108348 

TF 0.01 1 1000 0.9816236989125003 
TF 0.01 1 5000 0.9913451589015764 
TF 0.01 1 10000 0.9918196837464893 
TF 0.01 2 1000 0.9369406158310267 
TF 0.01 2 5000 0.9705260298878629 
TF 0.01 2 10000 0.9810760879088167 
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For further validation, we applied the best model (TF, Unigram, feature vector with length 
equals to 10000, and λ=10,000) on the hold-out validation set.  AUC of our model in the 
validation set is nearly 0.9988 - almost perfect!  Furthermore, different from some predictive 
coding solutions in the market, which only return a binary prediction (either relevant or 
irrelevant), our solution returns a numeric value between 0 and 1. The higher the value, the 
stronger the confidence that our model believes a document is relevant.  This allows for the 
results of the predictive coding exercise to be used in multiple ways.  For instance it can be 
used as a junk filter, or a prioritization tool, a QC tool or a host of other options.  We 
summarize the prediction in a pivot table below. From the table, we can see that by 
reviewing all emails with score larger than 0.8, we can find 99% of the relevant emails 
without any misclassification. 
  

Model Output True Non-Spam 
Email 

Predict Non-Spam 
Email 

Accumulated Non-Spam (%) 
Email 

0.9 < 𝑥 ≤ 1 487 487 97.4% 
0.8 < 𝑥 ≤ 0.9 8 8 99% 
0.7 < 𝑥 ≤ 0.8 2 3 99.4% 
0.6 < 𝑥 ≤ 0.7 0 2 99.4% 
0.5 < x ≤ 0.6 1 7 99.6% 

x ≤ 0.5 2 0 100% 

   
 

 


