
Setting up Datasets - Sampling  

A crucial step of setting up datasets is to sample subsets of the population to accurately and 
truthfully represent the huge corpuses of documents in training, validation, and testing.  

The representativeness and accuracy of the sample hinge on two factors: 1) the number of 
documents sampled, 2) sampling technique used. By the Law of Large Numbers, larger sample 
sizes lead to more accurate estimations on the population parameters, such as the prevalence 
of responsive documents or the error rate of the classifier used. For example, a sample reveals 
that 5 percent of the documents are pertinent. However, without knowing whether the sample 
size is adequate, one cannot extrapolate the 5 percent prevalence to the entire population with 
certainty. Likewise, one cannot extrapolate the validation classification error rate to the test 
dataset without knowing whether sample size is sufficient. In practice, we balance the cost of 
reviewing the sampled documents and the degree of uncertainty tradeoff.  

Sampling Techniques  

The most common sampling technique is the simple random sampling, where each document 
has equal probability being sampled. Though simple random sampling is fast and easy to 
implement, there are certain drawbacks. If the prevalence is low, reviewers need to go through 
a lot more documents to obtain enough responsive documents for training the model. Non-
probability sampling methods that based on human judgements and domain knowledge may 
help to capture more responsive documents. Yet, hand-picking documents is likely to reinforce 
human bias in model training. The graph below illustrates the bias problem introduced by hand-
picking sampling. In this example, the hand-picked sample misses informative data points, 
therefore leads to incorrect decision boundaries in training.  

  

Stratified random sampling can be used to improve the representation of each subgroup and to 
achieve a higher level of precision in estimating population parameters. The steps to perform 
stratified random sampling are: 

• Divide the pool of documents into subgroups (strata) based on chosen characteristics, 
such as custodian or department  

• Do simple random sampling within each subgroup   

The smaller the sample size, the more likely that simple random sampling may underrepresent 
small yet important subgroups. Stratified random sampling can improve the balance of the 
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sample. The simplified example below illustrates the benefit of using stratified random 
sampling. Each department represents a distinct subpopulation, where the percentage of 
relevant documents varies dramatically. Suppose we need to draw a random sample of 400 
documents. Under simple random sampling, because of the relative small size of finance 
documents and the natural sampling variance, we can end up with a very small amount of 
finance documents and a smaller number of pertinent documents. However, under stratified 
sampling, we first divide the population based on department, then draw a random sample 
within each subgroup based on their proportion. For example, with finance counts for 5 percent 
of total population, we draw 20 (5%*400) documents from the finance subpopulation. 
Therefore, all subgroups are represented in a balanced way, leading towards more accurate 
estimations on population mean.  

Stratification 
Variable - 

Department 

Subpopulation 
Size 

Subpopulation 
mean (unknown) 

Stratified 
Sample Size 

Simple 
Random 

Sample Size 

Finance 
1,000 (5% of 

total) 
10% 20 5 

Operation 10,000 (50%) 1% 200 210 

Legal 9,000 (45%) 5% 180 185 

In this example, the expected population mean estimation under the random sampling is: 
(5*10%+205*1%+185*5%)/400=2.75%. And the expected population mean estimation under 
the stratified random sampling is: (20*10%+200*1%+180*5%)/400=3.25%, which is the true 
population mean. Though the difference in this example is only 0.5%, it can be amplified by 
sampling variance.  

In terms of choosing the stratification variables, the estimation will be more precise if the 
population is partitioned into strata in such a way that within each stratum, the units are as 
similar as possible. For example, different departments may have different key words in text 
documents, yet within a department the documents and key words are much more similar. 
Stratifying by department helps to ensure that different key words are well represented in the 
sample.  

Other methods such as using clustering algorithm to partition the documents into heterogeneous groups 
can also be used to generate stratification variables.  

 

Sample Size on the Validation Set 

The most common method to determine the sample size required for measuring a statistic is 
the frequentist’s approach, which assumes a normal distribution for the unknown parameter 
based on the Central Limit Theorem (CLT). The approach calculates the margin of error of the 
unknown mean of a binomial variable, for example the average prevalence of relevant 
documents or classification error rate. There are three inputs: 1) confidence level, 2) population 



prevalence (which is assumed to be 50% for a larger and more conservative sample size 
estimation), and 3) population size (to adjust sample size when population is small1). The exact 
equation used to determine the sample is listed below: 
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where p is the unknown population mean (assumed to be 50 percent), Z is the critical value of a 
normal distribution at the given confidence level, N is the population size, and n is the sample 
size. The right handset of the equation, 𝜀, is the maximum margin of error that can be 

tolerated. When population size is very large, the finite population adjustment (
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ignored. For example, at 95 percent confidence level and with 60,000 documents in the 
population, the minimum sample size required is 2,309 for the margin of error to be under 2 
percent.  

Measuring sample mean with high certainty and small error band is essential in quality checking 
validation and scoring. The example below explains why this matters using recall, an important 
metric to test predictive coding model performance. Suppose we built a model on a training 
and a validation sample of 5,000 documents each, and the prevalence of relevant documents in 
the sample is 5 percent. This model is then scored on the remaining 50,000 documents in the 
testing set. Since the sample size is larger than the minimum requirement (see the example 
above), one can conclude with high certainty that the population prevalence is also 5 percent 
(the margin of error in this case is 0.38% percent), i.e. there are approximately 2,500 relevant 
documents (plus or minus 190 documents) in the testing set.  After reviewing the top 30 
percent documents with the highest probability of being relevant, 2,200 additional relevant 
documents are discovered. The estimated recall in this example is 88 percent (2,200 over 
2,500), i.e. we identified 88 percent of the relevant documents with the cost of only reviewing 
30 percent of the documents. The lower bound on recall in this example is 82 percent (2,200 
over 2,690).  

Similar to recall, lift curve is a tool to determine the optimal review methodology. All validation 
documents are scored and ranked based on their estimated probability, where the first decile 
represents the top 10 percent most relevant documents. The lift chart on the right can assist 
reviewers to allocate resources in the most efficient way. For example, the top 10 percent 
documents can be sent to more senior lawyers and the top 10 to 20 documents can be sent to 
more junior lawyers. The optimal allocation depends the cost of reviews by different types of 
reviewers.  

                                                      
1 For finite population corrector: https://onlinecourses.science.psu.edu/stat414/node/264 



 

Decile 
Validation 

Size 
# 

Positive 
Percent 
Relevant 

1 500 98 19.6% 

2 500 73 14.6% 

3 500 42 8.4% 

4 500 12 2.4% 

5 500 7 1.4% 

6 500 5 1.0% 

7 500 4 0.8% 

8 500 3 0.6% 

9 500 4 0.8% 

10 500 2 0.4% 
 

 

There are other less common approaches to calculate the sample size, such as using the 
Hoeffding Inequality and the Bayesian confidence interval calculation. Based on the Hoeffding 
Inequality, the minimum sample size required for measuring the mean of a random variable is: 
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where 𝜀 measures ‘error band’, i.e. the distance between the empirical mean from the true 
mean, and 𝛿 measures ‘uncertainty’, i.e. probability that we allow the error to exceed 𝜀. It is 
easy to see that sample size required grows exponentially with decreasing error band. Thus, it is 
very expensive to trade for high precision. If we set our error band to be 2 percent, at 95 
percent certainty (𝛿 is 5%), the minimum sample size required is 4,611 documents.  

A similar approach is to use the Chernoff Bound, which is used to approximate the 
generalization of a binomial distribution. Sample size required to approximate the mean of a is: 
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where 𝜀 measures ‘error band’, i.e. the distance between the empirical mean from the true 
mean, and 𝛿 measures ‘uncertainty’ (the opposite of confidence). Suppose we want to measure 
the sample mean with less than 2 percent error and 95 percent confidence, the sample size 
required would be approximately 18,600. Notice that both Hoeffding Inequality and Chernoff 
Bound tend to give a high number than needed (can be prove by binomial simulations).  

In practice, sample size depends on not only statistical calculation but also on real-world 
constraint such as cost and timeline.  

Sample Size on the Training Set  

In contrast with the straightforward sample size calculation used to measure the sample mean, 
it is more of an art than science to determine the size of the training set. Training size required 
is influenced by 1) model/classifier used and its complexity 2) features space and its 
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dimensionality. In general, more complex classifiers and higher dimensionality require more 
training sample. However, because both factors are not static during model training, it is 
difficult to know in advance how many training documents are needed.  

In practice, scholars have been using validation and learning curve to determine if more training 
data are needed. Learning curve measures the performance of a classifier (training and 
validation error rates) in respect to the sample size. Validation error rate follows an inverse 
power law as training sample increases. Adding training sample data is likely to help complex 
classifiers to perform better. However, if the classifier suffers from high bias, increasing training 
data will not by itself help the performance. The graph below give an example on how learning 
curves can help to determine if additional sample data are needed in the training set. 

 

 

Learning curves in this example is plotted using the Support Vector Machine model with fixed 
kernel and parameter. Y-axis is a performance metric, AUC, and the x-axis is the sample size in 
the training set. Validation performance improves at a decreasing rate as training set increases.  
The marginal benefit of adding additional training examples is small after 600 training 
examples. Therefore, the modeler decide that 1,400 training examples are sufficient for the 
model building.   

A workflow to determine training sample size is shown below: 

 

When the data are highly imbalanced, e.g. proportion of relevant documents is less than 10 
percent, adding positive training examples to the training set can improve the model 
performance. Stratified random sampling result can assist reviewers to target subgroups with 
the most relevant documents, thus expedite the review and avoid going through a large corpus 
of irrelevant documents. Based on the sample size and sample mean within each stratum, we 
can estimate the margin of error by each stratum.  For example, a 5,000 samples are stratified 
on department. In the operation department, the estimated percentage of relevant documents 
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has an upper bound of 1.4 percent with 95 percent confidence interval, which may be too low 
to call for additional reviews.  

Department Population Size Sample Size Sample Mean 
Upper Bound  

(95 C.I.) 
Lower Bound  

(95 C.I.) 

Finance 1000 250 10% 13.7% 6.3% 

Operation 10000 2500 1% 1.4% 0.6% 

Legal 9000 2250 5% 5.9% 4.1% 
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